python - pandas: calculate mean of numpy array for each row in a column -
i have pandas dataframe, df , contains columns each row contains numpy array of varying size e.g.
column 0 np.array([1,2,3]) 1 np.array([1,2,3,4]) 2 np.array([1,2])
i there built in pandas function return mean value of each array, i.e. row, entire column? :
df.a.mean()
but operates on each row. help.
you can use df.<column>.map
apply function each element in column:
df = pd.dataframe({'a': [np.array([1, 2, 3]), np.array([4, 5, 6, 7]), np.array([7, 8])] }) df out[8]: 0 [1, 2, 3] 1 [4, 5, 6, 7] 2 [7, 8] df['a'].map(lambda x: x.mean()) out[9]: 0 2.0 1 5.5 2 7.5 name: a, dtype: float64
Comments
Post a Comment